муниципальное общеобразовательное учреждение «Арамашевская средняя общеобразовательная школа имени Героя Советского Союза Михаила Мантурова»

ПРИЛОЖЕНИЕ к основной образовательной программе среднего общего образования МОУ «Арамашевская СОШ» Приказ № 82 от 30 августа 2020 г.

Рабочая программа учебного предмета

Предмет: Физика

Стандарт: ФГОС

Класс: 10

ПЛАНИРУЕМЫЕ ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ ОБУЧАЮЩИМИСЯ ОСНОВНОЙ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ ОСНОВНОГО ОБЩЕГО ОБРАЗОВАНИЯ

Выпускник на базовом уровне научится:

- демонстрировать на примерах роль и место физики в формировании современной научной картины мира, в развитии современной техники и технологий, в практической деятельности людей;
- демонстрировать на примерах взаимосвязь между физикой и другими естественными науками;
- устанавливать взаимосвязь естественнонаучных явлений и применять основные физические модели для их описания и объяснения;
- использовать информацию физического содержания при решении учебных, практических, проектных и исследовательских задач, интегрируя информацию из различных источников и критически ее оценивая;
- различать и уметь использовать в учебно-исследовательской деятельности методы научного познания (наблюдение, описание, измерение, эксперимент, выдвижение гипотезы, моделирование и др.) и формы научного познания (факты, законы, теории), демонстрируя на примерах их роль и место в научном познании;
- проводить прямые и косвенные изменения физических величин, выбирая измерительные приборы с учетом необходимой точности измерений, планировать ход измерений, получать значение измеряемой величины и оценивать относительную погрешность по заданным формулам;
- проводить исследования зависимостей между физическими величинами: проводить измерения и определять на основе исследования значение параметров, характеризующих данную зависимость между величинами, и делать вывод с учетом погрешности измерений;
- использовать для описания характера протекания физических процессов физические величины и демонстрировать взаимосвязь между ними;
- использовать для описания характера протекания физических процессов физические законы с учетом границ их применимости;
- решать качественные задачи (в том числе и межпредметного характера): используя модели, физические величины и законы, выстраивать логически верную цепочку объяснения (доказательства) предложенного в задаче процесса (явления);
- решать расчетные задачи с явно заданной физической моделью: на основе анализа условия задачи выделять физическую модель, находить физические величины и законы, необходимые и достаточные для ее решения, проводить расчеты и проверять полученный результат;
- учитывать границы применения изученных физических моделей при решении физических и межпредметных задач;
- использовать информацию и применять знания о принципах работы и основных характеристиках изученных машин, приборов и других технических устройств для решения практических, учебно-исследовательских и проектных задач;
- использовать знания о физических объектах и процессах в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде, для принятия решений в повседневной жизни.

Выпускник на базовом уровне получит возможность научиться:

- понимать и объяснять целостность физической теории, различать границы ее применимости и место в ряду других физических теорий;
- владеть приемами построения теоретических доказательств, а также прогнозирования особенностей протекания физических явлений и процессов на основе полученных теоретических выводов и доказательств;

- характеризовать системную связь между основополагающими научными понятиями: пространство, время, материя (вещество, поле), движение, сила, энергия;
- выдвигать гипотезы на основе знания основополагающих физических закономерностей и законов;
 - самостоятельно планировать и проводить физические эксперименты;
- характеризовать глобальные проблемы, стоящие перед человечеством: энергетические, сырьевые, экологические, и роль физики в решении этих проблем;
- решать практико-ориентированные качественные и расчетные физические задачи с выбором физической модели, используя несколько физических законов или формул, связывающих известные физические величины, в контексте межпредметных связей;
- объяснять принципы работы и характеристики изученных машин, приборов и технических устройств;
- объяснять условия применения физических моделей при решении физических задач, находить адекватную предложенной задаче физическую модель, разрешать проблему как на основе имеющихся знаний, так и при помощи методов оценки.

СОДЕРЖАТЕЛЬНЫЙ РАЗДЕЛ УЧЕБНОГО ПРЕДМЕТА ОСНОВНОЙ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ ОСНОВНОГО ОБЩЕГО ОБРАЗОВАНИЯ

Базовый уровень

Физика и естественно-научный метод познания природы

Физика — фундаментальная наука о природе. Методы научного исследования физических явлений. Моделирование физических явлений и процессов. Физический закон — границы применимости. Физические теории и принцип соответствия. Роль и место физики в формировании современной научной картины мира, в практической деятельности людей. Физика и культура.

Механика

Границы применимости классической механики. Важнейшие кинематические характеристики – перемещение, скорость, ускорение. Основные модели тел и движений.

Взаимодействие тел. Законы Всемирного тяготения, Гука, сухого трения. Инерциальная система отсчета. Законы механики Ньютона.

Импульс материальной точки и системы. Изменение и сохранение импульса. Использование законов механики для объяснения движения небесных тел и для развития космических исследований. Механическая энергия системы тел. Закон сохранения механической энергии. Работа силы.

Равновесие материальной точки и твердого тела. Условия равновесия. Момент силы. Равновесие жидкости и газа. Движение жидкостей и газов.

Механические колебания и волны. Превращения энергии при колебаниях. Энергия волны.

Молекулярная физика и термодинамика

Молекулярно-кинетическая теория (МКТ) строения вещества и ее экспериментальные доказательства. Абсолютная температура как мера средней кинетической энергии теплового движения частиц вещества. Модель идеального газа. Давление газа. Уравнение состояния идеального газа. Уравнение Менделеева–Клапейрона.

Агрегатные состояния вещества. Модель строения жидкостей.

Внутренняя энергия. Работа и теплопередача как способы изменения внутренней энергии. Первый закон термодинамики. Необратимость тепловых процессов. Принципы действия тепловых машин.

Электродинамика

Электрическое поле. Закон Кулона. Напряженность и потенциал электростатического поля. Проводники, полупроводники и диэлектрики. Конденсатор.

Постоянный электрический ток. Электродвижущая сила. Закон Ома для полной цепи. Электрический ток в проводниках, электролитах, полупроводниках, газах и вакууме. Сверхпроводимость.

Индукция магнитного поля. Действие магнитного поля на проводник с током и движущуюся заряженную частицу. Сила Ампера и сила Лоренца. Магнитные свойства вещества.

Закон электромагнитной индукции. Электромагнитное поле. Переменный ток. Явление самоиндукции. Индуктивность. Энергия электромагнитного поля.

Электромагнитные колебания. Колебательный контур.

Электромагнитные волны. Диапазоны электромагнитных излучений и их практическое применение.

Геометрическая оптика. Волновые свойства света.

Основы специальной теории относительности

Инвариантность модуля скорости света в вакууме. Принцип относительности Эйнштейна. Связь массы и энергии свободной частицы. Энергия покоя.

Квантовая физика. Физика атома и атомного ядра

Гипотеза М. Планка. Фотоэлектрический эффект. Фотон. Корпускулярно-волновой дуализм. Соотношение неопределенностей Гейзенберга.

Планетарная модель атома. Объяснение линейчатого спектра водорода на основе квантовых постулатов Бора.

Состав и строение атомного ядра. Энергия связи атомных ядер. Виды радиоактивных превращений атомных ядер.

Закон радиоактивного распада. Ядерные реакции. Цепная реакция деления ядер.

Элементарные частицы. Фундаментальные взаимодействия.

Строение Вселенной

Современные представления о происхождении и эволюции Солнца и звезд. Классификация звезд. Звезды и источники их энергии.

Галактика. Представление о строении и эволюции Вселенной.

Примерный перечень практических и лабораторных работ (на выбор учителя)

Прямые измерения:

измерение мгновенной скорости с использованием секундомера или компьютера с датчиками; сравнение масс (по взаимодействию);

измерение сил в механике;

измерение температуры жидкостными и цифровыми термометрами;

оценка сил взаимодействия молекул (методом отрыва капель);

измерение термодинамических параметров газа;

измерение ЭДС источника тока;

измерение силы взаимодействия катушки с током и магнита помощью электронных весов; определение периода обращения двойных звезд (печатные материалы).

Косвенные измерения:

измерение ускорения;

измерение ускорения свободного падения;

определение энергии и импульса по тормозному пути;

измерение удельной теплоты плавления льда;

измерение напряженности вихревого электрического поля (при наблюдении электромагнитной индукции);

измерение внутреннего сопротивления источника тока;

определение показателя преломления среды;

измерение фокусного расстояния собирающей и рассеивающей линз;

определение длины световой волны;

определение импульса и энергии частицы при движении в магнитном поле (по фотографиям).

Наблюдение явлений:

наблюдение механических явлений в инерциальных и неинерциальных системах отсчета;

наблюдение вынужденных колебаний и резонанса;

наблюдение диффузии;

наблюдение явления электромагнитной индукции;

наблюдение волновых свойств света: дифракция, интерференция, поляризация;

наблюдение спектров;

вечерние наблюдения звезд, Луны и планет в телескоп или бинокль.

Исследования:

исследование равноускоренного движения с использованием электронного секундомера или компьютера с датчиками;

исследование движения тела, брошенного горизонтально;

исследование центрального удара;

исследование качения цилиндра по наклонной плоскости;

исследование движения броуновской частицы (по трекам Перрена);

исследование изопроцессов;

исследование изохорного процесса и оценка абсолютного нуля;

исследование остывания воды;

исследование зависимости напряжения на полюсах источника тока от силы тока в цепи;

исследование зависимости силы тока через лампочку от напряжения на ней;

исследование нагревания воды нагревателем небольшой мощности;

исследование явления электромагнитной индукции;

исследование зависимости угла преломления от угла падения;

исследование зависимости расстояния от линзы до изображения от расстояния от линзы до предмета;

исследование спектра водорода;

исследование движения двойных звезд (по печатным материалам).

Проверка гипотез (в том числе имеются неверные):

при движении бруска по наклонной плоскости время перемещения на определенное расстояния тем больше, чем больше масса бруска;

при движении бруска по наклонной плоскости скорость прямо пропорциональна пути;

при затухании колебаний амплитуда обратно пропорциональна времени;

квадрат среднего перемещения броуновской частицы прямо пропорционален времени наблюдения (по трекам Перрена);

скорость остывания воды линейно зависит от времени остывания;

напряжение при последовательном включении лампочки и резистора не равно сумме напряжений на лампочке и резисторе;

угол преломления прямо пропорционален углу падения;

при плотном сложении двух линз оптические силы складываются;

Конструирование технических устройств:

конструирование наклонной плоскости с заданным КПД;

конструирование рычажных весов;

конструирование наклонной плоскости, по которой брусок движется с заданным ускорением;

конструирование электродвигателя;

конструирование трансформатора;

конструирование модели телескопа или микроскопа.

ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ 10 КЛАСС (70 ЧАСОВ –2 ЧАСА В НЕДЕЛЮ)

№	Тема урока	Элементы содержания ФГОС	Домашнее задание
1.	Что изучает физика. Физические явления. Наблюдения и опыты. Инструкция по ОТ № 001.	Физика — фундаментальная наука о природе. Методы научного исследования физических явлений. Моделирование физических явлений и процессов. Физический закон — границы применимости. Физические теории и принцип соответствия. Роль и место физики в формировании современной научной картины мира, в практической деятельности людей. Физика и культура.	Введение стр. 5-9 Вопросы стр. 9
_		КИНЕМАТИКА (10 часов)	
2.	Механическое движении. Система отсчета.	Границы применимости классической механики. Важнейшие кинематические характеристики — перемещение, скорость, ускорение. Основные модели тел и движений.	§ 1 - 3 стр. 11 – 19 Задание стр.14, 19
3.	Равномерное движение тел. Скорость. Уравнение равномерного движения. Решение задач.	Равномерное движение тел. Скорость равномерного движения. Путь, перемещение, координата при равномерном движении.	§ 4 стр. 20 - 23 Задание стр.23
4.	Графики прямолинейного равномерного движения. Решение задач.	Графики зависимости скорости, перемещения и координаты от времени при равномерном движении. Связь между кинематическими величинами.	§ 5 стр. 24 - 26 Задание стр. 26
5.	Скорость при неравномерном движении. Мгновенная скорость. Сложение скоростей.	Мгновенная скорость. Средняя скорость. Векторные величины и их проекции. Сложение скоростей.	§ 6 - 8 стр. 27 – 33 Задание стр. 28, 33
6.	Прямолинейное равноускоренное движение.	Ускорение, единицы измерения. Скорость при прямолинейном равноускоренном движении.	§ 9 - 10 стр. 34 – 41 Вопросы стр. 36 Задание стр. 41
7.	Лабораторная работа № 1 «Изучение движения тела, брошенного горизонтально» Инструкция по ОТ № 010	Изучение движения тела, брошенного горизонтально. Сила тяжести и ускорение свободного падения.	Стр. 412
8.	Равномерное движение точки по окружности.	Ускорение. Уравнения скорости и перемещения при прямолинейном равноускоренном движении.	§ 15 стр. 55 – 56 Вопросы стр. 56
9.	Лабораторная работа № 2 «Изучение движения тела по окружности» Инструкция по ОТ № 010	Изучение движения тела по окружности. Уравнения скорости и перемещения при прямолинейном равноускоренном движении.	Стр. 413

10.	Кинематика абсолютно твердого тела. Решение задач.	Движение тел. Абсолютно твердое тело. Поступательное движение тел. Материальная точка. Практическое применение физических знаний в повседневной жизни для использования простых механизмов, инструментов, транспортных средств.	§16 - 17, стр. 57 – 63 Задание стр. 61
11.	Контрольная работа №1 «Кинематика».	Основные формулы раздела механика и их использование.	
		ДИНАМИКА (9 часов)	
12.	Основное утверждение механики. Сила. Масса. Единица массы.	Что изучает динамика. Взаимодействие тел. Сила. Масса. Единица массы.	§18 – 19 стр. 64 – 70 Вопросы стр. 66, 70
13.	Первый закон Ньютона.	История открытия I закона Ньютона. Закон инерции. Выбор системы отсчёта. Инерциальная система отсчета	§ 20 стр.71 – 73 Задание стр. 73
14.	Второй закон Ньютона. Третий закон Ньютона.	Взаимодействие тел. Зависимость ускорения от действующей силы. Масса тела. II закон Ньютона. Принцип суперпозиции сил. Примеры применения II закона Ньютона. III закон Ньютона. Свойства тел, связанных третьим законом. Примеры проявления III закона в природе.	§ 21 – 22, 24 стр. 74 – 79, стр. 83 – 84 Вопросы стр. 76, 84 Задание стр. 79
15.	Принцип относительности Галилея.	Проведение опытов иллюстрирующих проявление принципа относительности. Принцип причинности в механике.	§ 25 – 26 стр. 85 – 88 Вопросы стр. 86, 88
16.	Сила тяжести и сила всемирного тяготения.	Закон всемирного тяготения. Гравитационная постоянная. Ускорение свободного падения, его зависимость от географической широты.	§ 27 - 28 стр. 89 – 95 Вопросы стр. 90 Задание стр. 95
17.	Первая космическая скорость. Вес. Невесомость.	Первая и вторая космические скорости. Все тела. Чем отличается вес тела от силы тяжести. Невесомость. Перегрузки.	§ 31 – 33 стр. 100 - 106 Вопросы стр. 101, 106 Задание стр. 104, 106
18.	Лабораторная работа № 3 «Измерение жесткости пружины» Закон Гука. Инструкция по ОТ № 010	Деформации и силы упругости. Электромагнитная природа сил упругости и трения. Сила упругости. Закон Гука.	§ 34 - 35 стр.107 – 112 Вопросы стр. 109 Задание стр. 109
19.	Силы трения. Коэффициент трения.	Сила трения. Трение покоя, трение движения. Коэффициент трения. Закон сухого трения.	§ 36 – 37 стр.113 – 122 Вопросы стр. 117, 122 Задание стр. 117, 122
20.	Лабораторная работа № 4 «Измерение коэффициента трения скольжения» Инструкция по ОТ № 010	Определение коэффициента трения скольжения. Наклонная плоскость.	Стр. 415
21.		СОХРАНЕНИЯ В МЕХАНИКЕ (10 часо	§ 38 – 39 ctp. 123 – 130
41.	Импульс. Закон сохранения импульса.	Импульс материальной точки и системы. Изменение и сохранение импульса.	8 38 – 39 стр. 123 – 130 Вопросы стр. 127 Задание стр. 130

22.	Решение задач на закон	Проведение опытов иллюстрирующих	
22.	сохранения импульса.	проявление принципа сохранения	
	Сохранения импуньса.	импульса и механической энергии.	
23.	Механическая работа и	Работа силы, направленной вдоль	§ 40 стр.131 - 133
25.	мощность силы.	перемещения и под углом к	g 40 cip.131 133
	мощность сныы.	перемещению тела. Мощность.	
		Выражение мощности через силу и	
		скорость.	
24.	Кинетическая энергия	Механическая энергия системы тел.	§ 41 – 42 ctp.135 – 139
	1	Закон сохранения механической	Вопросы стр. 136
		энергии.	Задание стр. 139
25.	Работа силы тяжести и	Работа силы.	§ 43 стр. 140 – 142
	упругости.		Вопросы стр. 142
	Консервативные силы.		
26.	Потенциальная энергия.	Проведение опытов иллюстрирующих	§ 44 – 45 стр. 143 – 148
	Закон сохранения энергии	проявление законов классической	Вопросы стр. 148
	в механике.	механики.	Задание стр. 145, 148
27.	Лабораторная работа № 5	Проведение опытов иллюстрирующих	Стр. 416
	. «Изучение закона	проявление законов классической	•
	сохранения механической	механики.	
	энергии».		
	Инструкция по ОТ № 010		
28.	Контрольная работа №2.	Законы динамики, всемирного	
	«Динамика. Законы	тяготения, закон сохранения.	
	сохранения в механике»	1	
29.	Равновесие тел.	Условия равновесия. Момент силы.	§ 51 – 52 стр. 165 - 172
			Задание стр. 169
30.	Давление. Условия	Наблюдение и описание передачи	§ 53 стр. 173 – 177
	равновесия жидкости.	давления газами и жидкостями.	Вопросы стр. 177
		Давление жидкостей и газов Закон	Задание стр. 177
		Паскаля. Практическое применение	
		закона Паскаля. Измерение давления	
		воздуха в баллоне под поршнем.	
	ОСНОВЫ МОЛЕ	<u>КУЛЯРНО-КИНЕТИЧЕСКОЙ ТЕОРИИ</u>	
31.	Основные положения	Молекулярно-кинетическая теория	Стр. 185 – 187
	МКТ.	(МКТ) строения вещества и ее	§ 56 – 57 стр. 188 – 193
	Размеры молекул.	экспериментальные доказательства.	Вопросы стр. 191
			Задание стр. 193
32.	Броуновское движение.	Строение вещества. Молекула. Оценка	§ 58 – 59 ctp. 194 – 199
	Силы взаимодействия	размеров молекул, количество вещества.	Вопросы стр. 196, 199
	молекул.		Задание стр. 196
33.	Основное уравнение МКТ	Практическое применение в	§ 60 ctp. 200 – 204
		повседневной жизни физических знаний	Вопросы стр. 204
		о свойствах газов, жидкостей и твердых	Задание стр. 204
		тел. Опытные подтверждения МКТ.	0.60.60
34.	Температура. Энергия	Температура и тепловое равновесие.	§ 62 – 63 crp. 207 – 215
	теплового движения	Абсолютная температура как мера	Вопросы стр. 209, 215
	молекул.	средней кинетической энергии	Задание стр. 215
6.7	**	теплового движения частиц вещества.	0.66.68
35.	Уравнение состояния	Модель идеального газа. Давление газа.	§ 66 – 67 ctp. 221 – 225
	идеального газа.	Уравнение состояния идеального газа.	Вопросы стр. 223
		Уравнение Менделеева-Клапейрона.	Задание стр. 223, 225

36.	Газовые законы.	Изопроцессы. Изобарный, изохорный,	§ 68 стр. 226 – 230
	Изопроцессы.	изотермический процессы. Законы	Вопросы стр. 230
		Бойля-Мариотта, Гей-Люссака, Шарля.	
37.	Лабораторная работа № 7 «Экспериментальная проверка закона Гей-Люссака» Инструкция по ОТ № 010	Уравнение Менделеева - Клапейрона. Изобарный процесс.	Стр. 419
38.	Контрольная работа № 3 «Основы МКТ»	Уравнение состояния газа. Уравнение Менделеева - Клапейрона. Изопроцессы: изобарный, изохорный, изотермический	§ 70 стр. 233 – 236 Вопросы стр. 236
39.	Насыщенный пар. Давление насыщенного пара. Влажность воздуха.	Агрегатные состояния и фазовые переходы. Испарение и конденсация. Насыщенный и ненасыщенный пар. Парциальное давление. Абсолютная и относительная влажность воздуха.	§ 71 – 73 стр. 237 – 246 Вопросы стр. 239, 243, 246 Задание стр. 239, 246
40.	Свойства жидкости. Поверхностное натяжение.	Свойства жидкости. Поверхностное натяжение. Связь давления со средней кинетической энергией молекул.	§ 75 стр. 250 Вопросы стр. 251
41.	Кристаллические и аморфные тела.	Кристаллические тела. Анизотропия. Аморфные тела. Плавление и отвердевание.	§ 78 стр. 257 – 261 Вопросы стр. 261 Задание стр. 261
	O	СНОВЫ ТЕРМОДИНАМИКИ (7 часов)	•
42.	Внутренняя энергия. Работа в термодинамике.	Внутренняя энергия. Способы измерения внутренней энергии. Внутренняя энергия идеального газа. Вычисление Работы при изобарном процессе. Геометрическое толкование работы. Физический смысл молярной газовой постоянной.	§ 79 - 80 стр. 262 – 267 Вопросы стр. 264, 267 Задание стр. 264, 267
43.	Уравнение теплового баланса. Количество теплоты.	Количество теплоты. Удельная теплоемкость.	§ 82 стр. 270 - 272 Вопросы стр. 272
44.	Решение задач на уравнение теплового баланса.	Работа и теплопередача как способы изменения внутренней энергии.	§ 83 стр. 273 - 275 Задание стр. 275
45.	Первый закон термодинамики. Второй закон термодинамики	Первый закон термодинамики. Необратимость тепловых процессов. Примеры необратимых процессов. Понятие необратимого процесса. Второй закон термодинамики. Границы применимости второго закона термодинамики.	§ 84 стр. 276 – 278 § 87 стр. 284 - 287 Вопросы стр. 278, 287 Задание стр. 278
46.	Принцип действия и КПД тепловых двигателей.	Принципы действия тепловых машин. Практическое применение в повседневной жизни физических знаний об охране окружающей среды. Принцип действия тепловых двигателей. Роль холодильника. КПД теплового двигателя. Максимальное значение КПД тепловых двигателей.	§ 88 стр. 288 – 292 Вопросы стр. 292 Задание стр. 292

47.	Решение задач	Решение задач на способы измерения	§ 89 стр. 293 - 294
	«Основы термодинамики»	внутренней энергии.	Задание стр. 294
48.	Контрольная работа № 4	КПД тепловых двигателей. Измерение	
	«Основы термодинамики»	внутренней энергии.	
		ЭЛЕКТРОСТАТИКА (7 часов)	
49.	Электрический заряд.	Закон Кулона. Закон сохранения	§ 90 - 91 стр. 296 - 304
	Закон сохранения заряда.	электрического заряда. Опыты Кулона.	Вопросы стр. 300, 304
	Закон Кулона.	Взаимодействие электрических зарядов.	Задание стр. 300, 304
		Закон Кулона – основной закон	
70		электростатики.	0.04.05
50.	Электрическое поле.	Электрическое поле. Напряженность и	§ 94 - 95 стр. 311 - 316
	Напряженность.	потенциал электростатического поля.	Вопросы стр. 313, 316
<i>5</i> 1	Подо томочного поляда	Hawaayyaayyaay	Задание стр. 313, 316
51.	Поле точечного заряда,	Напряженность электрического поля.	§ 96 стр. 317 – 318 Вопросы стр. 318
	сферы. Принцип суперпозиции полей.	Принцип суперпозиции полей.	Вопросы стр. 318
52.	Потенциал. Разность	Потенциальная энергия заряженного	§ 99 – 100 ctp. 327 – 332
34.	потенциалов.	тела в однородном электростатическом	Вопросы стр. 329, 332
	Потенциальная энергия.	поле.	Задание стр. 329, 332
53.	Связь между	Потенциал поля. Потенциал.	§ 101 стр. 333 – 335
55.	напряженностью и	Эквипотенциальная поверхность.	Вопросы стр. 335
	разностью потенциалов.	Разность потенциалов. Связь между	zempetar esp. ese
	Эквипотенциальные	напряженностью и разностью	
	поверхности	потенциалов.	
54.	Решение задач	Решение задач на разность	§ 102 стр. 336 – 339
	«Потенциальная энергия.	потенциалов. Связь между	Вопросы стр. 339
	Разность потенциалов»	напряженностью и разностью	
		потенциалов.	
55.	Электроемкость.	Электрическая емкость проводника.	§ 103 - 104 стр. 340 – 345
	Конденсатор. Энергия	Конденсатор. Виды конденсаторов.	Вопросы стр. 343, 345
	заряженного конденсатора.	Емкость плоского конденсатора.	Задание стр. 345
		Энергия заряженного конденсатора.	
	2.43	Применение конденсаторов.	`
5.0		КОНЫ ПОСТОЯННОГО ТОКА (9 часов	
56.	Электрический ток. Сила	Электрический ток. Условия	§ 106 ctp. 350 – 353
	тока	существования электрического тока. Сила тока. Действие тока.	Вопросы стр. 353 Задание стр. 353
57.	Закон Ома для участка	Сопротивление. Закон Ома для участка	§ 107 стр. 354 – 356
51.	цепи. Сопротивление	цепи. Единица сопротивления, удельное	Вопросы стр. 356
	цени. Сопротивление	сопротивление.	Задание стр. 356
58.	Электрические цепи.	Закономерности в цепях с	§ 108 стр. 357 – 359
20.	Последовательное и	последовательным и параллельным	Вопросы стр. 359
	параллельное соединение	соединением проводников.	Задание стр. 359
	проводников.	1 ,,	,, 1
59.	Лабораторная работа № 8	Закономерности в цепях с	Стр. 420
	«Последовательное и	последовательным и параллельным	
	параллельное соединение	соединением проводников.	
	проводников».	_	
	Инструкция по ОТ № 010		
60.	Решение задач на закон	Решение задач последовательное и	§ 109 стр. 360 – 361
	Ома и соединение	параллельное соединение проводников.	
	проводников.		

61.	Работа и мощность	Постоянный электрический ток.	§110 стр. 362 - 364	
	постоянного тока.	Электродвижущая сила.		
62.	ЭДС. Закон Ома для	Закон Ома для полной цепи. Источник	§111 – 112 стр. 365 – 369	
	полной цепи.	тока. Сторонние силы. Природа	Вопросы стр. 366, 369	
		сторонних сил. ЭДС. Закон Ома для	Задание стр. 369	
		полной цепи.		
63.	Лабораторная работа № 9	Объяснение устройства и принципа	Стр. 422	
	. «Измерение ЭДС и	действия технических объектов,		
	внутреннего	практическое применение физических		
	сопротивления источника	знаний в повседневной жизни для		
	тока». Инструкция по ОТ	безопасного обращения с домашней		
	№ 010	электропроводкой, бытовой электро- и		
		радиоаппаратурой.		
64.	Контрольная работа № 5.	Законы постоянного тока. Сила тока.		
	«Законы постоянного	Сопротивление в цепи.		
	тока».			
	ЭЛЕКТРИЧЕ	<u>СКИЙ ТОК В РАЗЛИЧНЫХ СРЕДАХ (5</u>		
65.	Электрическая	Проводники, полупроводники и	§114 – 115 стр. 374 – 380	
	проводимость различных	диэлектрики. Электрический ток в	Вопросы стр. 376, 380	
	веществ. Зависимость	проводниках, электролитах,	Задание стр. 380	
	сопротивления проводника	полупроводниках, газах и вакууме.		
	от температуры.	Проводимость металлов.		
		Сверхпроводимость.		
66.	Электрический ток в	Полупроводники, их строение.	§ 116 стр. 381 – 384	
	полупроводниках.	Электронная и дырочная проводимость.	Вопросы стр. 384	
67.	Электрический ток в	Термоэлектронная эмиссия.	§ 118 стр. 391 – 394	
	вакууме. Электронно-	Односторонняя проводимость. Диод.	Вопросы стр. 394	
	лучевая трубка.	Электронно-лучевая трубка.		
68.	Электрический ток в	Растворы и расплавы электролитов.	§ 119 стр. 395 – 398	
	жидкостях.	Электролиз. Закон Фарадея.	Вопросы стр. 398	
	Закон электролиза.		Задание стр. 398	
69.	Электрический ток в газах.	Электрический разряд в газе. Ионизация	§ 120 стр. 399 – 402	
	Несамостоятельный и	газа. Проводимость газов.	Вопросы стр. 402	
	самостоятельный разряды.	Несамостоятельный разряд. Виды		
		самостоятельного электрического		
		разряда.		
	ПОВТОРЕНИЕ И ОБОБЩЕНИЕ (5 часов)			
70.	Повторение и обобщение			
	курса физики за 10 класс.			

ДОКУМЕНТ ПОДПИСАН ЭЛЕКТРОННОЙ ПОДПИСЬЮ

СВЕДЕНИЯ О СЕРТИФИКАТЕ ЭП

Сертификат 603332450510203670830559428146817986133868575865 Владелец Телегина Лариса Николаевна

Действителен С 18.04.2021 по 18.04.2022